Antibody Engineering & Therapeutics Asia

February 26-28, 2019
Hilton Tokyo Bay Hotel
Tokyo, Japan

THE ONLY EVENT IN ASIA PROVIDING THE LATEST SCIENCE, TECHNOLOGY AND PARTNERS TO ACCELERATE ANTIBODY & PROTEIN THERAPIES, ADCS, BISPECIFICS AND IMMUNO-ONCOLOGY

Save Over $300 When You Register by December 7 www.AntibodyEngAsia.com

#ANTIBODYENG

KEYNOTE PRESENTATIONS

Technologies Enabling Antibody Therapeutic Development
Tomoyuki Igawa, Ph.D.
CEO and Research Head,
Chugai Pharmabody Research Pte. Ltd.,
Singapore

Therapeutic Development
Junichi Koga, Ph.D.
Head of R&D Division,
Executive Officer,
Daichii Sankyo, Japan

Targets & Therapeutics: Lessons Learned from Humira and other TNF Antagonists
Jochen G. Salfeld, Ph.D.
Vice President, Global Biologics,
AbbVie Bioresearch Center, USA

How We Can Improve the Affinity of an Antibody
Kouhei Tsumoto, Ph.D.
Professor and Director,
The University of Tokyo, Japan
Antibody Engineering & Therapeutics ASIA is produced by KNect365, the same organizers as Antibody Engineering & Therapeutics US (San Diego) and Antibody Engineering & Therapeutics EUROPE (Amsterdam). Bringing together renowned industry and academic scientists working in the areas of antibody and protein engineering and therapeutic development, this conference provides you with the latest information about antibody-related technologies and preclinical and clinical data on antibody, ADC, bispecific and immuno-oncology programs from around the world.

Register now to learn about cutting-edge scientific advances in the field and to find the partners you need to accelerate your next-generation antibodies towards commercial success.

SCIENCE

Accelerate Your Product to Market
Hear case studies, best practices and lessons learned from global antibody, protein, ADC and Immuno-oncology developers currently in preclinical and phase 1/2/3 clinical trials.

TECHNOLOGY

Evaluate New Technologies and Services
Improve your discovery, preclinical and clinical development by meeting with global technology leaders and service providers in the exhibit hall. The exhibit hall also features peer-submitted posters that contain new research from global scientists working in antibody and protein therapeutic development.

NETWORKING

Meet Your Next Partner at Antibody Engineering & Therapeutics ASIA
Connect with antibody, protein, ADC and immune-oncology leaders across Asia, Europe and North America during networking lunches, poster sessions, dinners and cocktail receptions.

SAVE OVER $300 WHEN YOU REGISTER BY DECEMBER 7 • WWW.ANTIBODYENGASIA.COM • +65 6508 2401
Enabling Technologies in Antibody Discovery and Therapeutic Development

8:00 Registration and Coffee
9:00 Workshop Moderators’ Opening Remarks
Sai Reddy, Ph.D., Assistant Professor, ETH Zurich, Switzerland
David Johnson, Ph.D., Founder and CEO, GigaGen, USA
9:15 Genomics and Yeast Display for Antibody Discovery and Engineering
In this session, we will discuss how display, deep sequencing, and bioinformatics can be integrated into antibody discovery and engineering programs. On the discovery side, such methods can be used to fine tune mouse immunization protocols and rapidly identify antibodies with functional characteristics of interest. On the engineering side, genomics can be used to identify mutational hotspots in antibody repertoires and facilitate affinity maturation. The sheer volume of data generated by such approaches requires fast and accurate algorithms for error correction and clustering, as well as new data management and visualization systems.
David Johnson, Ph.D., Founder and CEO, GigaGen, USA
9:45 Antibody Design and Engineering through Integration of Computational and Experimental Methods
Over the last decade there have been significant advances in computational protein design methods, high throughput protein characterization, and availability of antibody repertoire data. Convergence of these methods enable structure-guided design and engineering of antibodies. Here we discuss, through examples, application of computational and experimental methods for lead antibody discovery.
Karthik Viswanathan, Ph.D., Director, Research, Visterra, Inc., USA
10:15 Rational Selection of Antibody Clones
In silico sequence analysis is useful for the rational selection of developable, manufacturable, and “designable” clones. By using our high-resolution antibody modeling protocol which proved competitive at antibody modeling assessment II, we have recently found that one can identify the clones which are relatively easy for successful optimization. Molecular simulation and informatics approaches revealed such “designability” corresponds to structural versatility of CSR-H3.
Hiroki Shirai, Ph.D., Executive Fellow, Modality Research Laboratories, Astellas Pharma, Japan
10:45 Networking Refreshment Break
11:15 Rapid Functional Interrogation of the Immune Repertoire – Next Generation Antibody Discovery
Numerous disruptive technologies, from NGS of BCRs to bottom-up serum Ig proteomic, have been developed to study B cell repertoires in the past decade. At Pfizer, we are further pushing the boundary of technologies to enable fast and comprehensive interrogation of functionally relevant, antigen specific B cells from both peripheral and bone marrow compartments through the use of proprietary high-throughput automation, novel single-cell technology and deep sequencing.
Gabriel WC Cheung, Ph.D., Senior Director, BioMedicine Design, Pfizer, USA

MAIN CONFERENCE KEYNOTE SESSION • Tuesday, February 26, 2019

1:55 Chairperson’s Remarks

2:00 Targets & Therapeutics: Lessons Learned from Humira and other TNF Antagonists
The presentation will focus on the role of the underlying target biology for developing novel Biologics therapeutics using TNF and TNF antagonists as case study. I will discuss the evolution of Anti-TNF approaches, the history of adalimumab and will start to answer the question how to explain some of the apparent clinical differences between the Anti-TNF agents in clinical use today. In this context the learnings about TNF biology and the mechanism of action of TNF antagonists will be discussed and how those learnings impact the development of novel therapeutics.
Jochen G. Salfeld, Ph.D., Vice President, Global Biologics, AbbVie Bioresearch Center, USA

2:45 Drug Discovery Driven by Antibody Engineering Technologies
Previously, antibody engineering was mainly applied to improve the properties of a parent antibody by methods such as humanization, affinity maturation, stability engineering and half-life extension. Recent advances in antibody engineering have enabled us to conceive and realize novel antibody drug concepts. This presentation describes how antibody engineering technologies can drive the discovery of innovative antibody drugs.
Tomoyuki Iwaga, Ph.D., CEO and Research Head, Chugai Pharmabody Research Pte., Ltd., Singapore

3:30 Networking Refreshment Break

4:00 ADCs, Bispecifics, Cell Therapies and Oncolytic Virus Therapies: Daiichi Sankyo’s Innovative Therapeutic Development Progress and Pipeline
Junichi Koga, Ph.D., Head of R&D Division, Executive Officer, Daiichi Sankyo, Japan

4:30 How We Can Improve the Affinity of an Antibody
Physicochemical approaches deepen our insights into antigen-antibody interactions. Recently, we have investigated how we can rationally improve the affinity of antibodies for the targets. Here I introduce our recent progress on engineering affinity of antibody based on physical biochemical approaches.
Kouhei Tsumoto, M.D., Ph.D., Professor and Director, Department of Bioengineering, Department of Chemistry and Biotechnology, The University of Tokyo, Japan

5:00 Close of Day One

6:00 Networking Dinner in Tokyo
Network with fellow Antibody Engineering & Therapeutics Asia attendees from around the world by attending this Networking Dinner event at S Tokyo restaurant. Sign up to attend this optional dinner by selecting this dinner option during registration (additional fee required)
Assessing the Molecular Properties of mAb Clones at
9:30 Engineering Antibodies in Mammalian Cells by Combining Novel Strategies for Antibody Yeast Surface Display; Balancing Selectivity and Efficacy of Bispecific Antibodies and Bispecific ADCs
A novel streamlined approach for rapid construction of large yeast surface display antibody libraries will be presented that allows for simultaneous introduction of heavy- and light chain diversities into one display plasmid. Moreover, selection strategies for the isolation of antibodies with prescribed properties will be described (e.g. epitope coverage, species-crossreactivity).
Stefan Zielonka, Ph.D., Associate Director, Protein Engineering and Antibody Technologies, Merck KGaA (EMD Serono), Germany
Lars Toleiks, Ph.D., Director, Protein Engineering and Antibody Technologies, Merck KGaA (EMD Serono), Germany
9:00 Engineering Antibodies in Mammalian Cells by Combining Genome Editing with Next-generation Sequencing
We have recently established a technique known as homology-directed mutagenesis (HDM), which is able to generate mutagenesis libraries directly in mammalian cells using CRISPR-Cas9. In HDM, we introduce genetic diversity into target proteins (e.g., antibodies) by using single stranded oligonucleotides (ssODNs), which serve as DNA donor templates following Cas9-induced DNA cleavage. We combined HDM with next-generation sequencing, which enables several of the most essential methods of antibody engineering to be performed in direct in mammalian cells expressing full-length IgG.
Sai Reddy, Ph.D., Assistant Professor, ETH Zurich, Switzerland
9:30 Assessing the Molecular Properties of mAb Clones at Early Lead Selection Stage in cellulo by Using the ER as a Physiological Test Tube
Have you selected promising lead mAb clones only to find out later during pre-formulation stage that they have poor solubility issues? How can we avoid costly mistakes of selecting physicochemically unfavorable mAb clones and unknowingly advancing such mAbs in drug discovery/development pipeline? Are there any rational approaches? In this talk, I will illustrate the predictive values of overexpression-induced cellular phenotypes in assessing high concentration solution behaviors of individual mAb clones. By examining the biosynthetic steps of various human IgG mAbs for which prominent solution behavior problems were known (e.g., aggregation, crystallization, gelation, LLPS, cryoprecipitation, viscosity, agitation sensitivity, etc.), we found that condensation-prone IgG mAbs induces three types of prominent cellular phenotypes during mAb overexpression. Apparent correlations between solution behaviors in vitro and biosynthetic events in the endoplasmic reticulum (ER) can be leveraged to identify unfavorable mAb clones that are not suitable for high-level expression and high concentration liquid formulation. Our approach paves the way for a preemptive identification of unfavorable mAb clones from the lead panel from the very beginning, at an early transient expression testing stage even without protein purification.
Haruki Hasegawa, Ph.D., Principal Scientist, Biologics - Therapeutic Discovery, Amgen, USA
10:00 Networking Refreshment Break with Exhibit and Poster Viewing
10:45 Generating Potent and Selective Inhibitors of Kv1.3 Ion Channel by Fusing Venom Derived Mini Proteins into Peripheral CDR Loops of Antibodies
Pathogenic T-cell effector memory (TEM) cells drive many autoimmune disorders and are uniquely dependent on the Kv1.3 channel. A number of venom derived cysteine-rich mini-protein inhibitors of Kv1.3 are being developed as potential drug candidates, but can suffer from manufacturing difficulties, short half-lives and a lack of specificity. We have developed a novel molecular format wherein a peripheral CDR loop of an antibody has been replaced by a cysteine-rich mini protein. In this novel format, the mini-protein benefits from the half-life of an antibody and the antibody gains additional diversity by the addition of a scaffold which is pre-disposed to blockade of ion channels. We have used this format to develop a panel of low-NIC Kv1.3 inhibitors with selectivity exceeding 400-fold on Kv1.1, a close homologue.
John McCafferty, Ph.D., Founder and CEO, IONTAS, United Kingdom
Immuno-Oncology

3:00 Targeting CD47 with Superior Efficacy/Safety Profile

CD47/SIRPα interaction is critical in regulating macrophage function in tumor microenvironment. In recent studies, CD47 blockade had generated promising results in suppressing tumor progression, especially in blood cancers. However, the broad expression profile of CD47 has always been a concern in anti-CD47 approaches. CD47 molecules are highly expressed not only in various cancers, but also in normal tissues/organs such as brain, bladder, etc. Its level on red blood cells are ubiquitously high, therefore anemia had been frequently observed in preclinical and clinical applications. We designed a bispecific antibody to selectively bind to cancer cells to prevent off-tissue toxicity. Moreover, the bispecific antibody displayed synergy between two targeted pathways related to innate and adaptive immunity, respectively. More detailed data regarding this molecule will be shown in the presentation. In addition, an update on the progress of IBi308, our lead anti-CD47 antibody will be presented.

Junjian Liu, Ph.D., VP, Head of Drug Discovery & Preclinical Development, Innoven Biologics, China

3:30 Networking Refreshment Break with Exhibit and Poster Viewing

4:00 Selection and Development of Potent T Cell Receptors for Cancer Immunotherapy

T cell receptor (TCR)-based immunotherapy is emerging as a promising treatment modality for malignant diseases. Our proprietary target platform XPRESIDENT® discovers human leucocyte antigen (HLA)-bound tumor-associated peptides, while our TCR platform XCEPTOR® generates highly cancer-specific TCRs towards these novel and validated tumor targets. These TCRs are further developed towards adoptive cell therapy applications or engineered into our highly active bispecific TCR scaffold comprising a T-cell-engaging antibody for potent redirection and activation of T cells.

Dominik Maurer, M.D., Vice President, Immunology, Immatics Biotechnologies GmbH, Germany

4:30 Benchmarking T Cell-Redirecting Therapies for Cancer: Comparing CD3-Bispecifics and CAR T Cells

The two leading platforms for redirecting a patient’s T cells to recognize tumors, CD3-binding bispecific molecules and chimeric antigen receptor (CAR) T cells, both show clinical activity. We have developed pre-clinical in vitro and in vivo models to mechanistically compare these two technologies and will discuss our findings as well as the clinical implications.

David J. Dilillo, Ph.D., Staff Scientist, Immuno-Oncology, Regeneron Pharmaceuticals

5:00 An Anti-PD-1 Antibody with or without FcγRI-Binding Has Profound Impact on Its Biological Functions

Most of the anti-PD-1 antibodies used in clinical studies are of IgG4 isotype with the S228P mutation (IgG4S228P). The functional impact by the interaction of anti-PD-1 IgG4S228P antibody with Fc gamma receptors (FcγRs) is poorly understood. We have systematically studied the impact of FcγRI-engagement to anti-PD-1 antibody by comparing a pair of anti-PD-1 antibodies, BGB-A317/IgG4S228P and BGB-A317/IgG4-variant (abbreviated as BGB-A317), with the same variable regions but two different IgG4 Fc-hinge sequences through in vitro and in vivo functional assessment. The results suggested that FcγRI-binding and crosslinking exerts negative impact on the anti-PD-1 antibody-mediated T-cell stimulation function, potentially, attenuating anti-cancer activities.

Kang Li, Ph.D., SVP, Head of Biologics, BeiGene Co. Ltd., China

5:30 Networking Cocktail Reception with Exhibit and Poster Viewing

6:30 Close of Day Two

Antibody-Drug Conjugates

7:45 Registration and Coffee

8:10 Chairperson’s Remarks

8:15 Development of Novel Payloads for Oncology ADC Applications

A limited number of natural product families have been successfully utilized as ADC payloads. Selection of the novel ADC warhead is a challenging process. One of the challenges is often to determine the appropriate linker attachment position on a molecular scaffold, where no SAR or very limited SAR data exists. Another challenge is synthetic linker incorporation into original natural product to enable rapid assessment in ADC format. The aim is to avoid labor, time and resource intensive total synthesis or protection/deprotection strategies. We will discuss several natural product families and focus in particular on the development of novel linker attachment strategy to α-aminitin and evaluation of corresponding ADCs in vitro and in vivo.

Julia Gavrilyuk, Ph.D., Associate Director, Discovery Chemistry, AbbVie Stemenctrix, USA

8:45 Creating Next Generation ADCs with Industry Leading DAR Precision and Plasma Stability

LegoChem Biosciences (LCB) has developed a novel, next-generation site-specific antibody-drug conjugates (ADCs) platform which enables the generation of homogeneous ADCs with specifically defined number of payload only at the intended sites on the antibody employed. LCB presents an enzymatic conjugation platform and a proprietary cleavable linker chemistry which overcome limitations of existing ADC approaches including heterogeneity and demonstrate unprecedented plasma stability and efficient and traceless payload release only within the cancer cells.

Jeewook Chae, Ph.D., Chief Business Development Officer, LegoChem Biosciences, South Korea

9:15 Development of Antibody-Drug Conjugates (ADCs) Utilizing DDS and Molecular Imaging

Antibody-drug conjugate (ADC), as the next generation of antibody therapeutics, is a combination of an antibody and a drug connected via a specialized linker. ADC has four action steps: (1) systemic circulation, (2) the enhanced permeability and retention (EPR) effect, (3) penetration within the tumor tissue, and (4) action on cells, such as through drug delivery system (DDS) drugs. An antibody with a size of about 10 nm has the same capacity for passive targeting as some DDS carriers, depending on the EPR effect. In addition, some antibodies are capable of active targeting. A linker is stable in the bloodstream but should release drugs efficiently in the tumor cells or their microenvironment. Thus, the linker technology is actually a typical controlled release technology in DDS. Here, we focused on molecular imaging. Fluorescent and positron emission tomography (PET) or single photon emission computed tomography (SPECT) imaging is useful for the visualization and evaluation of antibody delivery in terms of passive and active targeting in the systemic circulation and in tumors. To evaluate the controlled release of the ADC in the targeted area, a mass spectrometry imaging (MSI) with a mass microscope as a new type of matrix-associated laser desorption/ionization (MALDI)-MSI analyzer, to visualize the drug released from ADC, was used. Currently, we are also developing a new drug imaging method using electrospay ionization (ESI)-MSI. Now, we have succeeded in developing several ADCs against refractory cancer. Amongst them, anti-IL-7R-ADC has a unique mode action of mechanisms (MOAs), 1) anti-stress and 2) anti-homing activity. It can be used for immunoregulation in both lymphoid malignancy and autoimmune diseases. Thus, we will present our recent work of ADC development utilizing DDS and molecular imaging.

Masahiro Yasunaga, M.D., Ph.D., Unit leader, Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Japan

9:45 Networking Refreshment Break with Exhibit and Poster Viewing
Bispecific Antibodies and Multi-Functional Biologics

Unlocking Cancer Therapy
The favorable biophysical and immunogenicity properties of DARPin® drug candidates enable the straightforward generation of multi-functional biologics. We took advantage of this and generated several well-behaved drug candidates that unlock restrictions of current cancer therapy. One example is MP0250, a dual VEGF/IGF inhibitor, for which early Phil clinical data indicate it could help overcoming drug resistance in cancer therapy. Another approach was chosen for MP0310, a FAP-targeted 41BB immune cell modulator, in that it was designed to allow for boosting the efficacy of existing cancer therapeutics, enabling novel treatment options.

H. Kaspar Binz, Ph.D., Vice President and Co-Founder, Molecular Partners AG, Switzerland

A Tetraspecific Bispecific Antibody with Strong Activity in Inducing Target Degradation and Tumor Regression
By targeting multiple disease mediators simultaneously, bispecific antibodies (bsAb) show distinguished clinical benefit compared to monoclonal antibodies (mAbs). Various bsAb structures have been described and several being investigated for clinical usage. We have developed a new bispecific design, named Fabs-in-tandem immunoglobulin (FITAg), in which two Fabs are fused directly in a crisscross orientation without any mutations or use of peptide linkers. This unique tetraspecific design provides a symmetrical IgG-like bsAb structure with correct association of 2 sets of VH/VL pairs, exhibiting excellent drug-like properties, in vitro and in vivo functions, as well as manufacturing efficiency for commercial development. EMB-01 is a FITAg molecule targeting both cMet and EGF and shows strong tumor inhibition in various PDX tumor models as well as a unique activity in inducing degradation of both target receptors. EMB-01 is current in Phase I development.

Chengbin Wu, Ph.D., Chairman & CEO, Shanghai EpimAb Biotherapeutics, China

Networking Refreshment Break with Exhibit and Poster Viewing

WuXiBody™, An Innovative and Potentially One-size-fits-all Bispecific Antibody Format to Open a New Gate for Therapeutic Bispecific Antibody Development
Bispecific antibodies are growing to be a new category of therapeutic antibodies. They can bind two different targets or two different epitopes on a target, creating additive or synergistic effects to increase the effect of individual antibodies. A lot of antibody engineering efforts have been put into designing the bispecific formats. Some progress in the field has solving some of the issues, e.g. by introducing mutations in the Fc region, such as “knobs-into-holes”, the preferred heterodimeric assembly of two different heavy chains has been accomplished. Many other approaches, such as DIS-lg, CrossMab and BiTE etc. have also been tried. However, these formats may still have various limitations in yield, purity, stability, solubility, half-life, and immunogenicity. Therefore, there is still great need to design bispecific molecules with desirable developability profile and potentially one-size-fit-all to accommodate different needs of therapeutic bispecific antibody programs. Aiming to solve those issues, WuXi Biologics has generated WuXiBody™, an innovative proprietary bispecific antibody format, which has successfully solved the mismatching problem of Ab-chains, contains Fc in the molecule to ensure IgG like half-life in human and easy purification in downstream, has great flexibility to be engineered as either asymmetric or symmetric format and to accommodate different valence needs of bispecific molecules, and has fully human sequence in the backbone expecting low immunogenicity in human. It can be easily produced like normal IgG from CHO cell with high expression level (up to 16g/L), high stability (>2 weeks at 37 °C in serum) and with normal T1/2 in monkey. The technical details and examples will be presented. This innovative bispecific antibody format will open a new gate for therapeutic bispecific antibody development.

Jing Li, M.D., Ph.D., Senior Vice President, Biologics Discovery, WuXi Biologics, China

ND021, A Novel Multi-Specific Antibody Targeting PD-L1-overexpressing Cancers That Stimulates Antigen-committed CDB+ T cells through Concomitant Engagement of a T cell Costimulatory Receptor
ND021 leverages Numab’s next-generation multi-specific technology to elicit highly potent – but tumor-restricted – agonism of 4-1BB, while concomitantly blocking PD-L1. The trispecific anti-PD-L1/4-1BB/NSA ND021 is designed to avoid dose-limiting hepatotoxicities associated with IgG-mediated 4-1BB activation. Animal data strongly suggest that ND021 eliminates the tolerability/efficacy trade-off associated with stimulation of the costimulatory receptor 4-1BB, while eliciting strong anti-tumor responses.

David Urech, Ph.D., CSO and Co-CEO, Numab AG, Switzerland

Humanized Anti-FIXa/FX Bispecific Antibody for the Treatment of Hemophilia A and Beyond
Emicizumab is humanized anti-FIXa/FX bispecific antibody, which was approval for prophylactic treatment of persons with hemophilia A with inhibitors. In this presentation, I will introduce how emicizumab was created, its preclinical data and Phase III study data. In addition, novel antibody engineering to further improve the property of emicizumab will be presented.

Yuri Teranishi, Researcher, Lead Optimization Unit, Chugai Pharmabody Research Pte. Ltd., Singapore

Close of Conference

10:15 Development of CCAP Method to Modify Antibody Site-specifically
CCAP (chemical conjugation by affinity peptide) is a technology to modify antibody/protein site-specifically using affinity peptide to target antibody/protein. For antibody modification, we employed a disulfide-linked peptide composed of 17 amino acids which recognize the marginal region between CH2 and CH3 of Fc in human IgG. The 8th Lys residue of the peptide was modified with DSG (dissuccinimidyl glutarate) and used for the modification of Fc to form the covalent linkage with the side chain of Lys 248 on Fc. This reaction proceeded rapidly and quantitatively to produce one or two adducts. This site-specific modification system of antibody through the affinity peptide connected with the functional ligands was applied for the generation of highly functional antibody conjugates including ADC (Antibody-drug conjugate), antibody diagnostic drug for PET imaging or bivalent antibody therapeutics.

Yuji Ito, Ph.D., Professor, Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Japan

10:45 An Overview of Daichi Sankyo’s (DS) ADC Technology and Updates on Preclinical and Clinical Development of DS ADC Pipeline
We developed a new ADC technology based on DxD, a novel derivative of the DNA topoisomerase I inhibitor exatecan. Our ADC technology has seven unique features; novel payload, high potency, bystander effect, high clearance of the payload, stable linker, tumor selective cleavage, and high DAR. The data suggesting these unique features and updates of our ADC programs using this novel technology will be presented.

Akiko Zembutsu (Nagase), Ph.D., Senior Researcher, Group I, Biologics & Immuno-Oncology Laboratories, Daichi Sankyo Co., Ltd., Japan

11:15 A New Twist on Antibody Library Engineering
Protein Engineering is a key strategy common to synthetic biology and biotherapeutic drug development. Each group relies on the effective application of engineering principles to discover novel, patentable enzymes and biologics. Critical to the success of both groups is the availability of high quality synthetic DNA high quality gene mutant libraries specifically designed to incorporate unique structural diversity into potentially useful proteins. Twist’s unique capability to synthesize very large fidelity gene mutant libraries with highly specific, user-defined, composition.

Garry Merry, Director, Library Business, Twist Bioscience, USA

11:45 Optimization of Antibody Format to Match Target Biology Needs
The majority of monoclonal antibodies (mAbs) approved for use have long serum half-life and effector function biology encoded by the Fc domain. For some intended clinical uses other formats may be preferred. This presentation will focus on two examples which represent different ends of the optimization spectrum. Monovalent, Fc-free fragments have been engineered to have long serum half-life by binding to serum albumin. We have also engineered IgG to be enabled to effect ‘on-target hexamerisation’ by virtue of a mutated IgM tail-piece sequence and hence enhanced complement-dependent cytotoxicity (CDC).

David Humphreys, Ph.D., Director, Antibody Biology, UCB-New Medicines, United Kingdom

12:15 Networking Luncheon with Exhibit and Poster Viewing

11:15 Chairperson’s Remarks
Jijie Gu, Ph.D., Head of Target Validation, Immunology Discovery, Abbvie Cambridge Research Center, USA

1:30 Generation and Characterization of Novel Bispecific Antibody against TLR2 and TLR4, As Potential Therapeutics for Sepsis
TLR2 and TLR4 play an important role in innate immune system and are the notable contributors to the pathogenesis of infection-associated sepsis. We have developed a potent anti-TLR2 and TLR4 bispecific antibody for treatment of sepsis. In this presentation, the preclinical data of our TLR2/TLR4 bsAb antibody will be presented.

Masahito Sato, Senior Researcher, Astellas Pharma, Inc., Japan

2:00 Antibody Presentation Title TBA
Shigeru Iida, Ph.D., Director, Antibody & Biologics Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Japan
BECOME A SPONSOR AND EXHIBITOR

Connect face-to-face with 100+ highly influential scientists, engineers and executives from industry and academia with the budget and authority to recommend, specify and approve the purchase of products and services to accelerate antibody research, discovery efforts and clinical programs.

Scientific Briefing Sponsors

Exhibitors

Showcase your products and services directly to this audience of antibody researchers and senior decision makers through:

- Exhibit Booth Packages – only 9 left!
- Scientific Briefings – only 4 left!
- Custom Emails
- Branding touches – lanyards, conference totes, pad, pens, etc.

A wide variety of options are available to help you meet your company objectives before, during and after the conference.

CONNECT WITH 100+ BUYERS
RESERVE YOUR EXHIBIT BOOTH OR SPONSORSHIP TODAY!

For more information on how you can connect with these key buyers, contact:

(A-L) Aimee L. Croke • T: +1-857-504-6697 • E: aimee.croke@knect365.com
(M-Z) Kristin Skahan • T: +1-857-504-6730 • E: kristin.skahan@knect365.com

SCIENTIFIC ADVISORY BOARD

Tomoyuki Igawa, Ph.D., CEO and Research Head, Chugai Pharmabody Research Pte. Ltd., Singapore
Osamu Sato, Ph.D., General Manager, Sakigake-Projects; DS-5141 and DS-1647 and Senior Executive Advisor for Head of R&D, Daiichi Sankyo Co., Ltd., Japan
Yuji Ito, Ph.D., Professor, Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Japan
Sai Reddy, Ph.D., Assistant Professor, ETH Zurich, Switzerland
Yong-Sung Kim, Ph.D., Professor, Departments of Molecular Science and Technology, and Applied Chemistry and Biological Engineering, Ajou University, South Korea
Chengbin Wu, Ph.D., Chief Executive Officer, Shanghai EpimAb Biotherapeutics Inc., China
H. Kaspar Binz, Ph.D., Vice President and Co-Founder, Molecular Partners AG, Switzerland
Andrew Bradbury, M.D., Ph.D., Chief Scientific Officer, Specifica, USA
Qing Li, Ph.D., Scientist I, MedImmune, USA
Karthik Viswanathan, Director, Research, Visterra, Inc., USA
Jijie Gu, Ph.D., Head of Target Validation, Immunology Discovery, Abbvie Cambridge Research Center, USA
Kouhei Tsumoto, Ph.D., Professor and Director, Department of Bioengineering, Department of Chemistry and Biotechnology, The University of Tokyo, Japan

Media Partners:

SAVE OVER $300 WHEN YOU REGISTER BY DECEMBER 7 • WWW.ANTIBODYENGASIA.COM • +65 6508 2401